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Magnetic and superconducting instabilities in the two-dimensional t-t�-Hubbard model are discussed within
a functional renormalization group approach. The fermionic four-point vertex is efficiently parametrized by
means of partial bosonization. The exchange of composite bosons in the magnetic, charge-density, and super-
conducting channels accounts for the increase in the effective couplings with increasing length scale. We
compute the pseudocritical temperature for the onset of local order in various channels.
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I. INTRODUCTION

The functional renormalization group approach to corre-
lated fermion systems has been of great help to detect differ-
ent types of instabilities and collective order within many
different models. This holds, in particular, for the two-
dimensional Hubbard model which is hoped to improve
our understanding of superconductivity in the high-Tc
cuprates.1–8 Most studies presented so far rely on the flow of
the momentum-dependent four-fermion vertex. �For analo-
gous work on four-quark vertices see Refs. 9 and 10.� They
are performed in the so-called N-patch scheme where the
Fermi surface is discretized into N patches, and the angular
dependence of the fermionic four-point function is evaluated
only for one momentum on each directional patch.

The approach presented here is based on the introduction
of fermionic bilinears corresponding to different types of
possible orders �partial bosonization� that was developed and
used before.11–16 It is also inspired by the efficient parametri-
zation method for the fermionic four-point vertex proposed
in Ref. 17. The link between the two approaches is given by
the fact that different channels of the fermionic four-point
function, defined by their �almost� singular momentum struc-
ture, correspond to different types of possible orders which
are described by different composite bosonic fields.

The advantages of our method are first, that it allows one
to treat the complex momentum dependence of the fermionic
four-point function in an efficient, simplified way, involving
only a small number of coupled flow equations and second,
that it permits to follow the renormalization group flow into
phases of broken symmetry. A comparative disadvantage
may be a better resolution of contributions from many chan-
nels in the N-patch approach. �In principle, both approaches
can be combined.� In this paper we focus on the first of these
two aspects. Spontaneous symmetry breaking was already
addressed for antiferromagnetism �AF� �Refs. 12 and 13� in
the Hubbard model close to half filling and for d-wave su-
perconductivity in an effective Hubbard-type model with a
dominating coupling in the d-wave channel.14

The main idea behind partial bosonization, namely, to rep-
resent the fermionic four-point vertex by a certain number of
exchange bosons, is graphically shown in Fig. 1. The depen-
dence of the four-point vertex on three external frequencies
and momenta �or simply “momenta”, as we are going to
write for short� is parametrized in terms of bosonic propaga-

tors together with Yukawa couplings which describe the in-
teraction between one boson and two fermions. The different
bosonic channels are distinguished according to the structure
of their momentum dependence which may possibly become
singular due to a zero of the inverse boson propagator. The
momentum-independent part of the four-fermion vertex may
either be distributed onto the different bosonic channels or be
kept fixed as a purely fermionic coupling. In order to avoid
the arbitrariness encountered when one chooses the first of
these two options, we adopt the second for our computations.
This may be regarded as a prototype for a combination of
partial bosonization with the N-patch method in the sense of
keeping only one patch and setting the four-fermion coupling
to a constant value.

Although for a numerically exact treatment of the four-
fermion vertex an infinity of bosonic fields would have to be
considered in principle, a small number of well-chosen fields
may suffice for a reasonable quantitative precision. The
choice of fields that has to be included in order to capture the
relevant physics depends on the model under investigation.
In the case of the two-dimensional Hubbard model at small
next-to-nearest-neighbor hopping �t��, a magnetic boson m
and a d-wave Cooper pair boson d are needed because they
correspond to the instabilities that occur. In order to avoid a
too poor momentum resolution of the four-fermion vertex,
we also include an s-wave Cooper pair boson field s and a
charge-density boson field �. Other types of bosons are
needed in other contexts—for instance, a d-wave charge-
density boson for the study of Pomeranchuk instabilities or a
p-wave boson for triplett superconductivity at larger values
of �t�� away from the van Hove filling.7 With the restriction
to the bosons m, d, s, and �, supplemented by a pointlike
four-fermion vertex, we will show that interesting results and

FIG. 1. Schematic picture of bosonization of the four-fermion
vertex. Solid lines correspond to fermions, the dashed line to a
complex �Cooper pair� boson, and the wiggly line to a real boson
representing a particle-hole state in the spin or charge-density wave
channel.
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a semiquantitative understanding can be found in a rather
simple truncation.

The two-dimensional Hubbard model18–20 on a square lat-
tice has attracted a lot of attention in the past 25 years be-
cause it is thought to cover important aspects of the physics
of the high-Tc cuprates. In analogy to the phase diagram of
the cuprates, it shows antiferromagnetic order at half filling
and is believed to exhibit d-wave superconducting order
�dSC� away from half filling.21 Today there are many studies
which predict the d-wave instability to be the dominating one
in a certain range of parameters aside from half filling,22–35

for a systematic overview see.36 The picture is also con-
firmed by some strikingly simple scaling approaches37–39 and
finds further support within more elaborate renormalization
group studies such as Refs. 1–7, 40, and 41.

II. METHOD AND APPROXIMATION

The starting point of our treatment is the exact flow equa-
tion for the effective average action or flowing action,42

�k�k =
1

2
STr��k

�2� + Rk�−1�kRk =
1

2
STr�̃k�ln��k

�2� + Rk�� .

�1�

The dependence on the renormalization group scale k is in-
troduced by adding a regulator Rk to the full inverse propa-
gator �k

�2�. In Eq. �1�, STr denotes a supertrace, which sums
over momenta, frequencies, and internal indices while �̃k is
the scale derivative acting only on the infrared �IR� regulator
Rk. The Hamiltonian of the system under considerations is
taken into account by the initial condition �k=�=S of the
renormalization flow, where � denotes some very large UV
scale and S is the microscopic action in a functional-integral
formulation of the Hubbard model. In the IR limit �k→0� the
flowing action �k equals the full effective action �=�k→0,
which is the generating functional of one-particle-irreducible
�1PI� vertex functions.

We employ a compact notation with Q= ��n=2�nT ,q�
and Q= ��n= �2n+1��T ,q� for bosonic and fermionic fields
and

�
Q

= T �
n=−�

� 	
−�

� d2q

�2��2 ,

��Q − Q�� = T−1�n,n��2��2��2��q − q�� . �2�

The components of the momentum q are measured in units
of the inverse lattice distance a−1. The discreteness of the
lattice is reflected by the 2� periodicity of the momenta q.

Although Eq. �1� is an exact flow equation, it can only be
solved approximately. In particular, a truncation has to be
specified for the flowing action, indicating which of the �in-
finitely many� 1PI vertex functions are actually taken into
account. Our ansatz for the flowing action includes contribu-
tions for the electrons, for the bosons in the magnetic,
charge, and s-wave and d-wave superconducting channels,
and for interactions between fermions and bosons,

�k��� = �F,k��� + �Fm,k��� + �F�,k��� + �Fs,k��� + �Fd,k���

+ �m,k��� + ��,k��� + �s,k��� + �d,k��� . �3�

The collective field �= �m ,� ,s ,s� ,d ,d� ,	 ,	�� includes both
fermion fields 	 ,	� and boson fields m ,� ,s ,s� ,d ,d�.

The purely fermionic part �F��� �the dependence on the
scale k is always implicit in what follows� of the flowing
action consists of a two-fermion kinetic term �Fkin, a
momentum-independent four-fermion term �F

U, and the
momentum-dependent four-fermion terms �F

m, �F
� , �F

s , and
�F

d ,

�F��� = �Fkin + �F
U + �F

m + �F
� + �F

s + �F
d . �4�

The fermionic kinetic term is given by

�Fkin = �
Q

	†�Q�PF�Q�	�Q� �5�

with inverse fermion propagator

PF�Q� = i� + 
�q� , �6�

where we take for the dispersion relation of the free electrons


�q� = − � − 2t�cos qx + cos qy� − 4t� cos qx cos qy . �7�

The momentum-independent part of the four-fermion cou-
pling is identical to the Hubbard interaction U. In our trun-
cation, this coupling is not modified during the flow. The
corresponding part of the effective action therefore reads

�F
U =

1

2 �
K1,K2,K3,K4

U��K1 − K2 + K3 − K4� � �	†�K1�	�K2��

��	†�K3�	�K4�� . �8�

In this work, as in Refs. 1–8, contributions to the fermi-
onic self-energy are neglected. Instead, we focus on the mo-
mentum dependence of the fermionic four-point function
F�K1 ,K2 ,K3 ,K4�, which, due to energy-momentum conser-
vation K4=K1−K2+K3, is a function of three independent
momenta. We decompose this vertex into a sum of four func-
tions F

m�Q�, F
��Q�, F

s �Q�, and F
d�Q�, each depending on

only one particular combination of the Ki, which correspond
to the four different bosons taken into account. This is in-
spired by the singular momentum structure of the leading
contributions to the four-fermion vertex. In our ansatz for the
effective average action these functions enter as

�F
m = −

1

2 �
K1,K2,K3,K4

F
m�K1 − K2���K1 − K2 + K3 − K4�

� �	†�K1��	�K2�� · �	†�K3��	�K4�� , �9�

�F
� = −

1

2 �
K1,K2,K3,K4

F
��K1 − K2���K1 − K2 + K3 − K4�

� �	†�K1�	�K2���	†�K3�	�K4�� �10�

for the real bosons, and, for the superconducting bosons, as
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�F
s = �

K1,K2,K3,K4

F
s �K1 + K3���K1 − K2 + K3 − K4�

� �	†�K1��	��K3���	T�K2��	�K4�� , �11�

�F
d = �

K1,K2,K3,K4

F
d�K1 + K3���K1 − K2 + K3 − K4� � fd��K1

− K3�/2�fd��K2 − K4�/2� � �	†�K1��	��K3��

��	T�K2��	�K4�� , �12�

where �= ��1 ,�2 ,�3� is the vector of the Pauli matrices, the
matrix � is defined as �= i�2, and the function

fd�Q� = fd�q� =
1

2
�cos qx − cos qy� �13�

is the d-wave form factor which is kept fixed during the flow.
In a first step, contributions to the four-fermion vertex are

distributed onto the couplings F
m, F

� , F
s , and F

d , depending
on their momentum dependence. Partial bosonization comes
into play at this stage as the absorption of these contributions
by the corresponding Yukawa couplings and bosonic propa-
gators. More concretely, this means that the couplings F

m,
F

� , F
s , and F

d are set to zero by introducing a scale depen-
dence of the bosonic fields, which in turn generates addi-
tional contributions to the various Yukawa couplings. The
technique by means of which this is achieved is called flow-
ing bosonization or rebosonization.43,44 We describe it in
some detail in Appendix A. In consequence, the complicated
spin and momentum dependence of the fermionic four-point
function F�K1 ,K2 ,K3 ,K4�, as it emerges during the flow,
will be captured by the momentum dependence of the propa-
gators of the bosons and the couplings between bosons and
fermions.

The interaction between electrons and composite bosons
are taken into account in our ansatz for the flowing action by
Yukawa-type vertices of the form

�Fm = − �
K,Q,Q�

h̄m�K�m�K� · �	†�Q��	�Q�����K − Q + Q�� ,

�F� = − �
K,Q,Q�

h̄��K���K��	†�Q�	�Q�����K − Q + Q�� ,

�Fs = − �
K,Q,Q�

h̄s�K��s��K��	T�Q��	�Q��� − s�K�

��	†�Q��	��Q������K − Q − Q�� ,

�Fd = − �
K,Q,Q�

h̄d�K�fd��Q − Q��/2��d��K��	T�Q��	�Q���

− d�K��	†�Q��	��Q������K − Q − Q�� . �14�

Note the presence of the d-wave form factor in the second-
to-last line. To determine the k dependence of the Yukawa

couplings h̄m, h̄�, h̄s, and h̄d is a central task within our ap-
proach.

The purely bosonic parts of the effective action are char-
acterized by the bosonic propagators. For the magnetic bo-

son, for instance, the inverse propagator is given by P̃m�Q�

 Pm�Q�+ m̄m

2 , where m̄m
2 is its minimal value and Pm�Q� is

the �strictly positive� so-called kinetic term. The contribu-
tions to the effective average action where the bosonic
propagators appear are

�m =
1

2�
Q

mT�− Q��Pm�Q� + m̄m
2 �m�Q� , �15�

�� =
1

2�
Q

��− Q��P��Q� + m̄�
2���Q� , �16�

�s = �
Q

s��Q��Ps�Q� + m̄s
2�s�Q� , �17�

�d = �
Q

d��Q��Pd�Q� + m̄d
2�d�Q� . �18�

Our parametrization of the frequency and momentum depen-
dence of the bosonic propagators and the Yukawa couplings
is described in Appendix B. In contrast to the decomposition
of the fermionic four-point vertex proposed in Ref. 17, our
bosonic propagators exhibit an explicit frequency depen-
dence.

In the present paper, the purely bosonic parts of the flow-
ing action are confined to the bosonic propagators. Higher
order purely bosonic interactions are currently investigated
and will be included in a forthcoming work.

III. INITIAL CONDITIONS AND REGULATORS

At the microscopic scale k=� the flowing action must be
equivalent to the microscopic action of the Hubbard model,
so the initial value of the four-fermion coupling must corre-
spond to the Hubbard interaction U. The bosonic fields de-
couple completely at this scale, so the initial values of the
Yukawa couplings are

h̄m�� = h̄��� = h̄s�� = h̄d�� = 0. �19�

The purely bosonic part of the effective action on initial scale
is set to

�m�� = mT · m, ���� = �T� ,

�s�� = s�s, �d�� = d�d . �20�

In other words, we take m̄i,�
2 = t2 and then use units t=1 and

Pi,�=0. The choice m̄i,�
2 = t2 amounts to an arbitrary choice

for the normalization of the bosonic fields, which are intro-
duced as redundant auxiliary fields at the scale �, where they
do not couple to the electrons. Of course, this changes during
the flow, where the bosons are transformed into dynamical
composite degrees of freedom, with nonzero Yukawa cou-
plings and a nontrivial momentum dependence of their
propagators.

In addition to the truncation of the effective average ac-
tion, regulator functions for both fermions and bosons have
to be specified. We use “optimized cutoffs”45,46 for both fer-
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mions and bosons. The regulator function for fermions is
given by

Rk
F�Q� = sgn�
�q���k − �
�q�����k − �
�q��� , �21�

the regulator functions for the real bosons are given by

Rk
m/��Q� = Am/� · �k2 − Fc/i�q, q̂����k2 − Fc/i�q, q̂�� , �22�

allowing for an incommensurability q̂ with Fc/i as defined in
Appendix B. Regulator functions for the Cooper pair bosons
are of the same form but no incommensurability needs to be
accounted for in these cases.

IV. FLOW EQUATIONS

The flow equations for the couplings follow from projec-
tion of the flow equation for the flowing action onto the
various different monomials of fields. The right-hand sides of
these flow equations are given by the one-particle-irreducible
diagrams having an appropriate number of external lines,
including a scale derivative �̃k acting only on the IR regulator
Rk. Diagrams contributing to the flow of boson propagators
are shown in Fig. 2.

Once some bosonic mass term m̄i
2 changes sign from posi-

tive to negative during the flow, this signals the divergence
of the four-fermion vertex function in the corresponding
channel. A negative mass term indicates local order since at a
given coarse graining scale k the effective average action
evaluated at constant field has a minimum for a nonzero
value of the boson field. The largest temperature where at
fixed values of U , t� ,� one of the mass terms m̄i

2 changes
sign during the flow is called the pseudocritical temperature
Tpc. It can also be described as the largest temperature where
short-range order sets it. If this order persists for k reaching a
macroscopic scale, the model exhibits effectively spontane-
ous symmetry breaking, associated in our model to �either
commensurate or incommensurate� antiferromagnetism or
d-wave superconductivity. The largest temperature for which
local order persists up to some k corresponding to the inverse
size of a macroscopic sample is the true critical temperature
Tc. In this paper we focus on the symmetric regime where we
have a positive mass term and stop the flow once a mass
term reaches zero. We plan to address the symmetry-broken
regimes in a future work.

The flow equations for the Yukawa couplings consist of a
direct contribution and an “indirect” contribution resulting
from flowing bosonization, see Appendix A. Diagrams con-
tributing directly to the flow of the Yukawa couplings are
shown in Fig. 3, those that contribute via flowing bosoniza-
tion are displayed in Fig. 4. Since we choose to distribute
contributions from flowing bosonization only onto the

Yukawa couplings and not onto the masses, it is crucial to

include a momentum dependence of the Yukawa coupling h̄m
in the magnetic channel in order to account for the emer-
gence of the d-wave superconducting instability. Otherwise
the contribution of the particle-particle box diagram �the first
in the lower line of Fig. 4� to the d-wave coupling would be
underestimated.

In order to demonstrate how the contributions to the four-
fermion vertex are taken into account via flowing bosoniza-
tion, we discuss the case of the purely fermionic loop dia-
grams shown in the upper line of Fig. 4. As long as no scale
dependence due to the regulator function has been intro-
duced, they are given by

��F
F = −

U2

2 �
K1,K2,K3,K4

�
P
� 1

PF�P�PF�P + K2 − K3�

+
1

PF�P�PF�− P + K1 + K3����K1 − K2 + K3 − K4�

��	†�K1�	�K2�� · �	†�K3�	�K4�� . �23�

In order to obtain the resulting contribution to the fermionic
four-point vertex function ��F

F�4�, we have to take the fourth

FIG. 2. 1PI diagrams contributing to the flow of bosonic propa-
gators. Wiggly lines denote real bosons �particle-hole channels� and
dashed lines complex bosons �Cooper pair channels�.

(b)

(a)

FIG. 3. 1PI diagrams which directly contribute to the flow of the
Yukawa couplings.

�

� � � �

(a)

(b)

(c)

FIG. 4. 1PI diagrams contributing to the flow of the Yukawa
couplings via flowing bosonization.
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functional derivative of ��F
F with respect to the fermionic

fields. It is given by

��F
F�4��K1,K2,K3,K4�

=
1

4

�4

�	�
��K1��	��K2��	�

��K3��	��K4�
��F

F

=−
U2

4 �
P
 4S��;��

PF�P�PF�− P + K1 + K3�

−
������

PF�P�PF�P + K2 − K1�
+

������

PF�P�PF�P + K2 − K3�� ,

�24�

where S��;��= 1
2 �������−������� denotes the singlet projec-

tion. The two last lines of Eq. �24� can be compared to the
fourth derivative with respect to the fields of the right-hand
sides of Eqs. �9�–�12�. This allows one to obtain the loop
corrections to the four-fermion couplings F

m, F
� , F

s , and F
d

introduced there. The second last line of Eq. �24� can be
absorbed by the s-boson, and the last line by the m and
�-bosons. No contribution to the d-boson arises at this stage.

To determine how the last line of Eq. �24� should be dis-
tributed onto the m- and �-bosonic channels, we use the
identity ������= 1

2 �������+���
j ���

j �. All terms have now the
same structures as those appearing in the fourth functional
derivative of Eq. �9�. We obtain the following loop contribu-
tions to F

m, F
� , and F

s :

��F
m�F�K1 − K2� = −

U2

2 �
P

1

PF�P�PF�P + K2 − K1�
,

��F
��F�K1 − K2� = −

U2

2 �
P

1

PF�P�PF�P + K2 − K1�
,

��F
s �F�K1 + K3� =

U2

2 �
P

1

PF�P�PF�− P + K1 + K3�
.

�25�

The k dependence of F
m, F

� , and F
s is obtained from the

one-loop expressions �Eq. �25�� by adding the infrared cutoff
Rk

F to the inverse fermionic propagator and by applying the
formal derivative �̃k= ��kRk

F�� /�Rk
F under the summation. For

F
m, for example, one obtains

�kF
m�Q� = �̃k�F

m�Q� , �26�

where the formal derivative �̃k should be read as acting under
the loop summation of terms contributing to �F

m�Q�. Note
that ��F

m�F�Q� is only part of the complete loop contribution
�F

m�Q�, namely, the one which arises from the two diagrams
shown in the first line of Fig. 4. The complete �F

m�Q� is
obtained if the diagrams shown in Fig. 4 are all taken to-
gether.

In our partially bosonized approach, the fermion loop
contributions to the momentum-dependent four-fermion ver-
tex in Eq. �25� are fully accounted for by the exchange of the
bosons m, �, and s. This is shown schematically in Fig. 5. In

the language of boson exchange, the momentum dependence
of the coupling in, for instance, the magnetic channel can be
taken into account by the momentum dependence of the ex-

pression h̄m
2 �K1−K2�P̃m

−1�K1−K2�. In practice, we keep F
m

=0 during the flow and account for the loop-generated �F
m

by a corresponding change �h̄m
2 . We note that only the com-

bination h̄m
2 P̃m

−1 appears in the computations as long as the
only momentum dependence of the Yukawa couplings is that
of the boson momentum. In fact, by a momentum-dependent
rescaling of the fields for the m-boson it is in principle pos-
sible to arbitrarily attribute parts of the momentum depen-

dence to h̄m
2 or to P̃m. Nevertheless, introducing the two fac-

tors h̄m
2 and P̃m

−1 instead of only F
m is useful if one wants to

approach spontaneous symmetry breaking. It has the advan-
tage that instead of having to deal with the divergent cou-
pling F

m, one only needs to account for the mass term chang-
ing its sign. The term containing m̄m

2 in Eq. �15�, which is
quadratic in the boson field, becomes part of the effective
potential for the magnetic boson in a more extended trunca-
tion. Our description of the k-dependent flow of F

m by means

of the k-dependent quantities h̄m and P̃m �and analogously for
F

� and F
s � is achieved formally by a k-dependent nonlinear

field redefinition, see Appendix A, Eq. �A5�. At momentum
Q=0, for example, the contribution to the flow of the
momentum-dependent Yukawa couplings due to the dia-
grams in the first line of Fig. 4, according to Eqs. �A7� and
�A8�, is given by

��kh̄m/�
2 �0��F = −

U2

2
P̃m/��0��

P

�̃k
1

PF�P�PF�P�
, �27�

��kh̄s
2�0��F =

U2

2
P̃s�0��

P

�̃k
1

PF�P�PF�− P�
. �28�

At this level, we have described the exact one-loop per-
turbative result for the momentum-dependent four-fermion
vertex in terms of boson exchange. The concept of the flow-
ing action, however, allows for a “renormalization group im-
provement” which is obtained by k-dependent “running cou-
plings” or vertices. In the purely fermionic flows1–8 the
constant coupling U would be replaced by the full
momentum- and k-dependent four-fermion vertex. In our
partially bosonized approach, where we keep only a constant
four-fermion coupling U, this renormalization group im-
provement is generated by the diagrams involving internal
bosonic lines, shown in Fig. 3 and the second and third lines
of Fig. 4. It is at this level where our truncation for the
momentum dependence of the Yukawa couplings and inverse

FIG. 5. Schematic picture of the bosonization of loop contribu-
tions to the four-fermion vertex. The terms indicated by the three
dots correspond to loop diagrams having internal bosonic lines.
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boson propagators as well as the restriction to a certain num-
ber of bosons starts to matter.

The momentum dependence of the four-fermion vertex
which is generated by boson exchange is much more com-
plicated than the simple form �25�. We therefore have to
decide how to distribute these contributions onto the differ-
ent boson exchange channels. To this end, we adopt an ap-
proximation where the momentum dependence of the four-
fermion couplings F

m, F
� , F

s , and F
d can be identified with

the dependence of the diagrams in Figs. 3 and 4 on the so-
called transfer momentum. This momentum is defined as the
difference between the momenta attached to the two fermi-
onic propagators in each diagram. Particle-hole diagrams are
absorbed by the real bosons and particle-particle diagrams by
the complex Cooper pair bosons. All diagrams are evaluated
at external momenta L= ��T ,� ,0� and L�= ��T ,0 ,�� and
transfer momenta 0= �0,0 ,0� and �= �0,� ,��. For small
values of ��� and �t��, the �spatial parts of� momenta L and L�
are close to the Fermi surface and the density of states is
rather large there so that this choice will capture the relevant
physics for not too large ��� and �t��. Where more than one
combination of external momenta �L and �L� is compatible
with the condition that the transfer momentum is either 0 or
�, we take the average over them. For the coupling in the
d-wave channel, the evaluation of the contributing diagrams
is discussed in more detail in the next section.

While the contributions to the Yukawa couplings in Eqs.
�27� and �28� are proportional to U2 and therefore present
already for large k, the diagrams shown in Fig. 3 and in the
second and third lines of Fig. 4 start to have an influence on
the flow of the Yukawa couplings only after nonzero Yukawa
couplings have been generated due to Eqs. �27� and �28� in
the first place. In perturbation theory, they would correspond
to higher order effects �U3 and U4. �Perturbatively, every
Yukawa coupling counts as U.� The flow of the couplings in
the magnetic and charge-density channels starts to differ as
soon as the diagrams shown in the first line of Fig. 3 become
important. They contribute positively to the coupling in the
magnetic channel but negatively to the couplings in the
charge-density and superconducting s-wave channels. This

explains why among the three Yukawa couplings h̄m, h̄�, and

h̄s the dominating one is h̄m, although in accordance with
Eqs. �27� and �28� all three are generated with equal size at
early stages of the flow. Due to the comparatively large

Yukawa coupling h̄m the mass term m̄m
2 is driven fastest to-

ward zero by the diagrams in Fig. 2. We can therefore un-
derstand why the charge-density and s-wave superconduct-
ing channels never become critical in the range of parameters
investigated.

V. COUPLING IN THE d-WAVE CHANNEL

The generation of a coupling in the d-wave channel in the
framework used here has already been discussed in an earlier

work.15 The d-wave Yukawa coupling h̄d arises during the
renormalization flow due to the first diagram in the lower
line of Fig. 4, which is the only particle-particle box graph.
The coupling is extracted from contributions due to this
graph by means of the prescription

�F
d�l,l�� =

1

2
���F,s

�4�,pp�L,L,− L,− L� − ��F,s
�4�,pp�L,L�,− L,

− L��� , �29�

where the subscript s denotes the singlet and the superscript
pp the particle-particle part of the four-point vertex. The mo-
mentum vectors L and L� are defined as in the previous sec-
tion. For a motivation of this definition of the d-wave cou-
pling see Ref. 15. The contribution from the particle-particle
box diagram to the s-wave superconducting channel is ob-
tained by adding, instead of subtracting, the two terms on the
right-hand side of Eq. �29�. The s- and d-wave superconduct-
ing channels of the four-fermion coupling can be described
as those parts of its singlet particle-particle contribution
which are symmetric �s-wave� and antisymmetric �d-wave�
under a rotation by 90° of the outgoing electrons with respect
to the incoming electrons. In our approximation, the first
diagram in the second line of Fig. 4 contributes only to the
s-wave channel.

Once a coupling in the d-wave channel has been gener-
ated through the particle-particle box diagram, it is further
enhanced due to the direct contribution shown as the first
graph in the second line of Fig. 3. Since this graph, which is

itself proportional to the Yukawa coupling h̄d, contributes

positively to the flow of h̄d, it can lead to a growth of this
coupling without bounds, i.e., lead to an instability in the
d-wave channel. This instability will be the result of antifer-
romagnetic spin fluctuations �corresponding to the wiggly
internal line of the diagram mentioned� so that our results
finding a d-wave instability through this contribution support
the idea, proposed and defended in Refs. 22–28, that antifer-
romagnetic spin fluctuations are responsible for d-wave su-
perconductivity in the two-dimensional Hubbard model �and
maybe also in the cuprates insofar as the Hubbard model
serves as a guide to the relevant cuprate physics�.

That the particle-particle graph in the second line of Fig. 3
is crucial for the emergence of a d-wave instability arising
from antiferromagnetic fluctuations is mirrored by the fact
that this diagram has the same momentum structure as the
BCS gap equation. In the presence of an interaction which in
momentum space is maximal around the �� ,�� points—a
condition which is fulfilled when antiferromagnetic spin
fluctuations dominate—the gap solving this equation exhibits
d-wave symmetry.

VI. NUMERICAL RESULTS

We now come to the discussion of the numerical results
we have obtained at small next-to-nearest-neighbor hopping
�t�� / t�0.1. For values of �t�� and ��� which are larger than
those for which we show results in Fig. 8, there is, in addi-
tion to the tendency to antiferromagnetism which is present
already at large scales k�0, a tendency toward ferromag-
netism which becomes important at lower scales. Due to our
simple parametrization of the inverse magnetic propagator

P̃m, see Eqs. �B2�–�B4� in Appendix B, and due to our choice
of external momenta for evaluating the diagrams shown in
Figs. 3 and 4, we may overestimate magnetic fluctuations at
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larger values of ��� and �t��. Hence, we do not show any
results for these larger values.

In the range of parameters investigated, we find that either
antiferromagnetism or d-wave superconductivity is the lead-
ing instability. In agreement with previous findings, the cou-
pling in the d-wave channel emerges due to antiferromag-
netic fluctuations. In the parameter regime where this
coupling is enhanced most strongly it competes with �and is
driven by� the coupling in the incommensurate antiferromag-
netic �iAF� channel which was studied in detail in Ref. 16,
where the same framework was used as here.

In the upper panels of Figs. 6 and 7, the flow of the
different channels of the fermionic four-point vertex is dis-
played at fixed t� / t=−0.01 and different values of U / t
=2.5,3 ,3.5. The lower panels show the flow of the corre-
sponding bosonic masses, which approximate unrenormal-
ized inverse susceptibilities in channels which are close to
critical. As expected, the antiferromagnetic coupling grows
fastest and remains the dominant one for small to intermedi-
ate values of ���, for a representative case see Fig. 6. For
� / t�−0.28, however, the d-wave coupling diverges for
higher temperatures than the antiferromagnetic coupling, for
an example of this kind of scenario see Fig. 7. The couplings
in the charge-density wave and superconducting s-wave

channels are also considerably enhanced in both cases, and
their influence is quantitatively important although they do
not diverge.

In Fig. 8 the highest temperature at a given value of � is
plotted for which one of the boson masses drops to zero at

some scale k̄, signaling the onset of local order on a typical

length scale k̄−1 in the corresponding channel. These “pseud-
ocritical temperatures” Tpc are shown for t� / t=−0.01 �upper
panel� and t� / t=−0.1 �middle panel� and different values of
U. Pseudocritical temperatures for antiferromagnetism are
higher by a factor �3 than those presented in our last
paper.16 This is mainly due to the neglect of the fermionic
wave-function renormalization and of quartic bosonic cou-
plings in the present paper. Both of these would suppress the
growth of the four-fermion vertex and hence the emergence
of local order. These contributions are omitted here for the
sake of a simple and nevertheless systematic approach to the
four-fermion vertex. They will be included in a forthcoming
work where also the bosonic vertex functions that directly
couple together the different types of bosons will be taken
into consideration. We recall that often the true critical tem-
perature Tc is found to be substantially smaller than the
pseudocritical temperature Tpc.

12,14

(b)

(a)

FIG. 6. �Color online� Upper panel: flow of the four-fermion
vertex in the different channels for U / t=3, t� / t=−0.01,
� / t=−0.12, and T / t=0.188. The shorthands used in the

legend are defined as F,ac
 h̄m
2 ��� / P̃m���, F,�
 h̄�

2��� / P̃����,
F,s
 h̄s

2�0� / P̃s�0�, and F,d
 h̄d
2�0� / P̃d�0�. Lower panel: flow of

the minima of the inverse bosonic propagators �bosonic mass
terms�.

(b)

(a)

FIG. 7. �Color online� Same as Fig. 6 for � / t=−0.32 and T / t
=0.109. In addition to the couplings defined in Fig. 6 we plot

F,ai
 h̄m
2 ��− Q̂� / P̃m��− Q̂� �coupling in the incommensurate AF

channel�, where Q̂= �0, q̂ ,0� with q̂ the size of the incommensura-
bility. For these parameters the coupling in the d-wave channel
diverges first. In the magnetic channel, incommensurate antiferro-
magnetic fluctuations �long-dashed lines� dominate over commen-
surate ones �short-dashed lines�.
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For some pairs of parameters U and t� there exists a range
of values of � where incommensurate antiferromagnetism
has the largest pseudocritical temperature, for others there
are no such values of �, see Fig. 8. In the range of �,
where the transition from �either commensurate or incom-
mensurate� antiferromagnetic to d-wave superconducting or-
der occurs in Fig. 8, there is an extremely close competition
between the couplings in the commensurate and incommen-
surate antiferromagnetic and d-wave superconducting chan-
nels. Which of them diverges first may in part depend on the
truncation, so when one includes fermionic self-energy con-
tributions and quartic bosonic couplings, this may have an
important effect on the size and existence of regions exhib-
iting local incommensurate antiferromagnetic order.

Most existing studies using the framework of the fermi-
onic functional renormalization group focus on the flow of
the four-fermion vertex, as we do in the present work, so we
can compare our results with theirs. The most recent results
for the phase diagram of the two-dimensional Hubbard
model at varying � and fixed t�, presented in Ref. 47, are
obtained by means of an N-patch scheme restricted to the
flow of the four-fermion vertex. A temperature-flow scheme
is used in that work, where the temperature is used as a
parameter which flows from infinity to a nonzero value

where a first vertex function reaches some critical value. The
temperature T� where the divergence of the four-fermion ver-
tex occurs �it is obtained in Ref. 47 by means of a polyno-
mial fit of the inverse susceptibilities� may be compared to
our pseudocritical temperature Tpc. Both correspond, albeit
in different ways, to the divergence of the four-fermion ver-
tex and the onset of local order. However, whereas in the
temperature-flow scheme the temperature appears as a flow
parameter, it is kept fixed in our approach.

The results in Ref. 47 are in complete qualitative agree-
ment with ours. This concerns, for instance, the dependence
of local order on the values of U and t�. If U is increased, the
divergence of vertex functions �equivalent to the emergence
of local order� occurs already at larger temperatures and the
divergence of the coupling in the d-wave channel, for the
small values of �t�� considered, happens closer to the van
Hove filling �=4t�. There is also agreement on the fact that
d-wave superconductivity, when its coupling is enhanced
most strongly, competes mostly with incommensurate rather
than commensurate antiferromagnetism �cAF� as the domi-
nant instability.

The quantitative comparison between our results and
those in Ref. 47 has to be handled with some care: for T
�Tpc our flow is stopped at a nonzero scale k. For quantities
evaluated at k�0, the detailed implementation of the infra-
red cutoff has an effect on the results. �This contrasts with
results for temperatures above the pseudocritical line in Fig.
8, where the four-fermion vertex never diverges, such that
we can extrapolate to k=0. For k=0, any residual depen-
dence on the cutoff scheme is an indication of the shortcom-
ings of a given truncation.� Despite this caveat, the compari-
son remains instructive. We find that for t� / t=−0.1 and
U / t=3.5 the maximal values of Tpc and T� as functions of �
differ by a factor of about 4/3 and slightly more for U / t
=2.5. For the onset of d-wave superconducting order, the
pseudocritical temperature Tpc as a function of � shown in
Fig. 8 is larger than TdSC

� obtained in Ref. 47 by a factor of at
least 2 for both U / t=2.5 and U / t=3.5. The difference gets
more pronounced with increasing distance from half filling.
As already mentioned, a possible source of quantitative
shortcomings of our calculations is that magnetic fluctuations
may be overestimated due to our simple parametrization of
the momentum dependence of the magnetic boson propaga-
tor �see Eqs. �B2�–�B4��. Furthermore, the diagrams shown
in Figs. 3 and 4 are evaluated at �0,�� and �� ,0�, which is
adequate only for not too large values of ��� where the Fermi
surface is close to the boundary of the Brillouin zone. When
magnetic fluctuations are generally overestimated and anti-
ferromagnetic fluctuations are dominant, the critical scales
for the onset of d-wave superconducting order and hence the
pseudocritical temperatures can be expected to come out too
large. We recall at this place that both the present work and
Ref. 47 neglect the renormalization of the fermionic propa-
gator, which is expected to have a sizeable lowering effect on
the value of Tpc.

VII. CONCLUSION

In this work we have shown that the functional renormal-
ization group approach to correlated fermion systems based

0

0.1

0.2

0.3

-0.5 -0.3 -0.1

T
pc

/t

-µ/t

cAF
iAF

dSC

0

0.1

0.2

0.3

-0.6 -0.5 -0.4

T
pc

/t

-µ/t

cAF
iAF

dSC

(b)

(a)

FIG. 8. �Color online� Pseudocritical temperatures Tpc for t� / t
=−0.01 �upper panel� and t� / t=−0.1 �lower panel� at different val-
ues of U / t=3.5 �upper lines�, U / t=3 �middle lines�, and U / t=2.5
�lower lines�. Short-dashed lines denote the onset of commensurate
antiferromagnetic order �cAF�, long-dashed lines, appearing in
small regions at larger values of −�, the onset of incommensurate
antiferromagnetic order �iAF�. Solid lines indicate the onset of
d-wave superconducting order �dSC�.
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on partial bosonization can account for the competition be-
tween the antiferromagnetic and superconducting instabili-
ties in the two-dimensional Hubbard model. We have studied
the emergence of a coupling in the d-wave channel and its
divergence in a certain parameter range as a consequence of
antiferromagnetic spin fluctuations. In a nutshell, this result
confirms the spin-fluctuation route to d-wave superconduc-
tivity in the two-dimensional Hubbard model.

Our treatment of the fermionic four-point vertex paves the
way for a unified treatment of spontaneous symmetry break-
ing in the two-dimensional Hubbard model. In a next step,
self-energy corrections to the electrons as well as quartic
bosonic couplings can be included in our approach. This may
shed light on the question of coexistence of different types of
order, which so far has been addressed in the framework of
the functional renormalization group only on the basis of a
mean-field approach replacing the flow of vertex functions at
lower scales.40,41 In a final step, a unified treatment of
the flow of vertex functions in both the symmetric and
symmetry-broken regimes can be given within the present
approach.
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APPENDIX A: FLOWING BOSONIZATION

To illustrate how flowing bosonization works, consider, as
an example, the part of the effective average action which in
our truncation involves the m-boson. �The computation is
exactly analogous for the other bosons.� It is given by

�m + �Fm + �F
m =

1

2�
Q

mT�− Q��Pm�Q� + mm
2 �m�Q�

+ �
K,Q,Q�

h̄m�K�m�K� · �	†�Q��	�Q�����K

− Q + Q�� −
1

2 �
K1,K2,K3,K4

F
m�K1 − K2���K1

− K2 + K3 − K4�

� �	†�K1��	�K2�� · �	†�K3��	�K4�� .

�A1�

Now we introduce a scale dependence of the field m�Q�,
writing it as mk�Q�. The change in mk�Q� between two
scales k and k−�k that are infinitesimally close to each other
can be chosen to be

mk�Q� − mk−�k�Q� = ��k�Q�m̃k�Q� , �A2�

where the auxiliary field m̃k�Q� is given by

m̃k�Q� = �
P

�	†�P��	�P − Q�� , �A3�

and �k�Q� is a function that will be chosen in such a way that
F

m cancels to zero at all scales.

To achieve this, we take the generalized flow equation

�k���k� = �k���k���k
+ �

Q

��k�k�
��k��k�

��k
, �A4�

which yields in our case

�k�k = �k�k�mk
+ �

Q

�− �k�k�Q�P̃m,k�Q�mk�Q� · m̃k�Q�

+ �k�k�Q�h̄m�Q�m̃k�Q� · m̃k�− Q�� . �A5�

We can read off the modified equations for F
m and h̄m and set

the scale dependence of F
m to zero,

�kh̄m�Q� = �kh̄m�mk
�Q� + P̃m,k�Q��k�k�Q� ,

�kF
m�Q� = �kF

m�mk
�Q� + 2h̄m�Q��k�k�Q� 
 0. �A6�

This allows us to eliminate the hitherto undetermined func-
tion �k�Q� and to obtain the flow equation for the Yukawa
coupling including contributions from flowing bosonization,

�kh̄m�Q� = �kh̄m�mk
�Q� +� P̃m,k�Q�

2h̄m�Q�
�kF

m�
mk

�Q� . �A7�

Similarly, we get for the other Yukawa couplings the follow-
ing contributions from flowing bosonization:

�kh̄��Q� = �kh̄���k
�Q� +� P̃�,k�Q�

2h̄��Q�
�kF

��
�k

�Q� ,

�kh̄s�Q� = �kh̄s�sk,sk
��Q� +� P̃s,k�Q�

2h̄s�Q�
�kF

s�
sk,sk

�

�Q� ,

�kh̄d�Q� = �kh̄d�dk,dk
��Q� +� P̃d,k�Q�

2h̄d�Q�
�kF

d�
dk,dk

�

�Q� . �A8�

APPENDIX B: PARAMETRIZATION OF BOSONIC
PROPAGATORS AND YUKAWA COUPLINGS

In our truncation, both the P̃i and h̄i are momentum-
dependent functions which in addition depend on the scale k.
In principle, one could try to discretize the momentum de-
pendence and attempt a numerical solution of the partial dif-

ferential equations for P̃i�Q ,k� and h̄i�Q ,k�. Instead, we pro-
ceed in this paper to a parametrization of the momentum
dependence which we describe in this appendix.

1. Propagators

The truncation of the inverse bosonic propagators is
briefly described in the following lines. For a more detailed
discussion see Ref. 16. �Note, however, that in Ref. 16 we
discuss the antiferromagnetic propagator which is distin-
guished from the magnetic propagator employed here by a
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shift in the argument by the antiferromagnetic wave vector
�= �� ,��.� For the kinetic term Pm of the magnetic boson
we make the ansatz

Pm,k�Q� = Zm�Q
2 + AmF�q� . �B1�

The quadratic dependence on frequency is motivated by
mean-field results for small ��Q�. �For larger values of ��Q�, it
mimics the decaying frequency dependence of the Yukawa
couplings, which is not taken into account explicitly.�

In Eq. �B1� we employ for F�q�,

Fc�q� =
Dm

2 · �q − ��2

Dm
2 + �q − ��2 , �B2�

if commensurate antiferromagnetic fluctuations dominate.
Here �q�2 is defined as �q�2=qx

2+qy
2 for qx,y � �−� ,�� and

continued periodically otherwise. If incommensurate antifer-
romagnetic fluctuations dominate, we use

Fi�q, q̂� =
Dm

2 F̃�q, q̂�

Dm
2 + F̃�q, q̂�

, �B3�

where the momentum dependence is quartic in momentum
and explicitly includes the incommensurability q̂,

F̃�q, q̂� =
1

4q̂2 ��q̂2 − �q − ��2�2 + 4�qx − ��2�qy − ��2� .

�B4�

The shape coefficient Dm used in Eqs. �B2� and �B3� is
computed as

Dm
2 =

1

Am
�Pm�0,0,0� − Pm�0,� − q̂,��� . �B5�

The Zm and Am factors are computed from the differences of
inverse propagators at different frequencies and momenta,

Zm =
1

�2�T�2 �Pm,k�2�T,q = 0� − Pm,k�0,q = 0�� ,

Am =
1

q̄2 �Pm,k�0, q̂ + q̄,0� − Pm,k�0, q̂,0�� , �B6�

where q̄ is a parameter which is fixed in such a way that
results are practically independent of it. For the results dis-
played before, we have set it to 0.15. The propagator of the
�-boson is treated in exactly the same way.

For the s- and d-bosons, the treatment is just as for the a
and �-bosons in the commensurate case. Since the minima of
the inverse propagator do not occur in the vicinity of the
wave vector �, we do not use a shift by this vector,

Ps/d,k�Q� = Zs/d�2 + As/dFs/d�q� �B7�

with

Fs/d�q� =
Ds/d

2 · �q�2

Ds/d
2 + �q�2 . �B8�

2. Yukawa couplings

The Yukawa couplings h̄m�Q� and h̄��Q� are parametrized
by means of a linear momentum dependence

h̄m/��Q� =
�� − q�

���
h̄m/��0� +

�q�
���

h̄m/���� �B9�

and the contributions to the flow of h̄m/��0� and h̄m/���� are
computed according to Eqs. �A7� and �A8�,

�kh̄m/�,k
2 �0� = �kh̄m/�,k

2 �mk/�k
�0� − P̃m/�,k�0��kF,k

m/��mk/�k
�0� ,

�kh̄m/�,k
2 ��� = �kh̄m/�,k

2 �mk/�k
��� − P̃m/�,k����kF,k

m/��mk/�k
��� .

�B10�

This approximation is most adequate when the loop contri-
butions to F

m/��K1−K2� are minimal for K1−K2=0 and
maximal for K1=K2=� or inversely. This is the case when-
ever either ferromagnetic or commensurate antiferromag-
netic fluctuations dominate. When incommensurate antiferro-
magnetic fluctuations dominate, we approximate the loop

contribution to h̄m/���� occurring in the second line of Eq.
�B10� by

�kh̄m/�,k
2 ��� = �kh̄m/�,k

2 �mk/�k
��� − P̃m/�,k�� − Q̂��kF,k

m/��mk/�k
��� .

�B11�

Here Q̂ denotes an incommensurability the size of which is
given by the positions of the minima of the inverse magnetic
�or charge-density� propagator. The maximal value of

h̄m�0,q�, which in the parameter regime we study is always
located more closely to �� ,�� than to �0,0�, has been de-

noted h̄a in Refs. 12, 13, 15, and 16. The minimal value of

P̃m�Q� corresponds to the “antiferromagnetic mass term” m̄a
2

introduced there.
For the s- and d-bosons, dominant contributions are for

K1=−K3. This is partly accounted for by the propagators, and
for the s-boson no further momentum dependence of the
Yukawa coupling is assumed. When the d-wave channel be-
comes critical �see Fig. 7�b� of Ref. 17�, the four-fermion
coupling in the d-wave channel has a sharp peak around zero
momentum. This is accounted for by including a Gaussian
function which is centered around zero momentum in the

definition of h̄d. We have checked that our results are practi-
cally independent of the width of this Gaussian function, as
long as it is reasonably peaked.
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